skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Eltareb, Ali"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We perform classical molecular dynamics (MD) and path-integral MD (PIMD) simulations of H2O and D2O using the q-TIP4P/F model over a wide range of temperatures and pressures to study the nuclear quantum effects (NQEs) on (i) the vitrification of liquid water upon isobaric cooling at different pressures and (ii) pressure-induced transformations at constant temperature between low-density amorphous and high-density amorphous ice (LDA and HDA) and hexagonal ice Ih and HDA. Upon isobaric cooling, classical and quantum H2O and D2O vitrify into a continuum of intermediate amorphous ices (IA), with densities in-between those of LDA and HDA (depending on pressure). Importantly, the density of the IA varies considerably if NQEs are included (similar conclusions hold for ice Ih at all pressures studied). While the structure of the IA is not very sensitive to NQE, the geometry of the hydrogen-bond (HB) is. NQE leads to longer and less linear HB in LDA, HDA, and ice Ih than found in the classical case. Interestingly, the delocalization of the H/D atoms is non-negligible and identical in LDA, HDA, and ice Ih at all pressures studied. Our isothermal compression/decompression MD/PIMD simulations show that classical and quantum H2O and D2O all exhibit LDA–HDA and ice Ih-HDA transformations, consistent with experiments. The inclusion of NQE leads to a softer HB-network, which lowers slightly the LDA/ice Ih-to-HDA transformation pressures. Interestingly, the HB in HDA is longer and less linear than in LDA, which is counterintuitive given that HDA is ≈25% denser than LDA. Overall, our results show that, while classical computer simulations provide the correct qualitative phenomenology of ice and glassy water, NQEs are necessary for a quantitative description. 
    more » « less
  2. Abstract The potential energy landscape (PEL) formalism is a powerful tool within statistical mechanics to study the thermodynamic properties of classical low-temperature liquids and glasses. Recently, the PEL formalism has been extended to liquids/glasses that obey quantum mechanics, but applications have been limited to atomistic model liquids. In this work, we extend the PEL formalism to liquid/glassy water using path-integral molecular dynamics (PIMD) simulations, where nuclear quantum effects (NQE) are included. Our PIMD simulations, based on the q-TIP4P/F water model, show that the PEL of quantum water is both Gaussian and anharmonic. Importantly, the ring-polymers associated to the O/H atoms in the PIMD simulations, collapse at the local minima of the PEL (inherent structures, IS) for both liquid and glassy states. This allows us to calculate, analytically, the IS vibrational density of states (IS-VDOS) of the ring-polymer system using the IS-VDOS of classical water (obtained from classical MD simulations). The role of NQE on the structural properties of liquid/glassy water at various pressures are discussed in detail. Overall, our results demonstrate that the PEL formalism can effectively describe the behavior of molecular liquids at low temperatures and in the glass states, regardless of whether the liquid/glass obeys classical or quantum mechanics. 
    more » « less
  3. The potential energy landscape (PEL) formalism is a tool within statistical mechanics that has been used in the past to calculate the equation of states (EOS) of classical rigid model liquids at low temperatures, where computer simulations may be challenging. In this work, we use classical molecular dynamics (MD) simulations and the PEL formalism to calculate the EOS of the flexible q-TIP4P/F water model. This model exhibits a liquid–liquid critical point (LLCP) in the supercooled regime, at (Pc = 150 MPa, Tc = 190 K, and ρc = 1.04 g/cm3) [using the reaction field technique]. The PEL-EOS of q-TIP4P/F water and the corresponding location of the LLCP are in very good agreement with the MD simulations. We show that the PEL of q-TIP4P/F water is Gaussian, which allows us to calculate the configurational entropy of the system, Sconf. The Sconf of q-TIP4P/F water is surprisingly similar to that reported previously for rigid water models, suggesting that intramolecular flexibility does not necessarily add roughness to the PEL. We also show that the Adam–Gibbs relation, which relates the diffusion coefficient D with Sconf, holds for the flexible q-TIP4P/F water model. Overall, our results indicate that the PEL formalism can be used to study molecular systems that include molecular flexibility, the common case in standard force fields. This is not trivial since the introduction of large bending/stretching mode frequencies is problematic in classical statistical mechanics. For example, as shown previously, we find that such high frequencies lead to unphysical (negative) entropy for q-TIP4P/F water when using classical statistical mechanics (yet, the PEL formalism can be applied successfully). 
    more » « less
  4. Abstract Amorphous ices are usually classified as belonging to low-density or high-density amorphous ice (LDA and HDA) with densitiesρLDA ≈ 0.94 g/cm3andρHDA ≈ 1.15−1.17 g/cm3. However, a recent experiment crushing hexagonal ice (ball-milling) produced amedium-density amorphous ice (MDA,ρMDA ≈ 1.06 g/cm3) adding complexity to our understanding of amorphous ice and the phase diagram of supercooled water. Motivated by the discovery of MDA, we perform computer simulations where amorphous ices are produced by isobaric cooling and isothermal compression/decompression. Our results show that, depending on the pressure employed, isobaric cooling can generate a continuum of amorphous ices with densities that expand in between those of LDA and HDA (briefly, intermediate amorphous ices, IA). In particular, the IA generated atP ≈ 125 MPa has a remarkably similar density and average structure as MDA, implying that MDA is not unique. Using the potential energy landscape formalism, we provide an intuitive qualitative understanding of the nature of LDA, HDA, and the IA generated at different pressures. In this view, LDA and HDA occupy specific and well-separated regions of the PEL; the IA prepared atP = 125 MPa is located in the intermediate region of the PEL that separates LDA and HDA. 
    more » « less
  5. We perform path integral molecular dynamics (PIMD) simulations of a monatomic liquid that exhibits a liquid–liquid phase transition and liquid–liquid critical point. PIMD simulations are performed using different values of Planck’s constant h, allowing us to study the behavior of the liquid as nuclear quantum effects (NQE, i.e., atoms delocalization) are introduced, from the classical liquid ( h = 0) to increasingly quantum liquids ( h > 0). By combining the PIMD simulations with the ring-polymer molecular dynamics method, we also explore the dynamics of the classical and quantum liquids. We find that (i) the glass transition temperature of the low-density liquid (LDL) is anomalous, i.e., [Formula: see text] decreases upon compression. Instead, (ii) the glass transition temperature of the high-density liquid (HDL) is normal, i.e., [Formula: see text] increases upon compression. (iii) NQE shift both [Formula: see text] and [Formula: see text] toward lower temperatures, but NQE are more pronounced on HDL. We also study the glass behavior of the ring-polymer systems associated with the quantum liquids studied (via the path-integral formulation of statistical mechanics). There are two glass states in all the systems studied, low-density amorphous ice (LDA) and high-density amorphous ice (HDA), which are the glass counterparts of LDL and HDL. In all cases, the pressure-induced LDA–HDA transformation is sharp, reminiscent of a first-order phase transition. In the low-quantum regime, the LDA–HDA transformation is reversible, with identical LDA forms before compression and after decompression. However, in the high-quantum regime, the atoms become more delocalized in the final LDA than in the initial LDA, raising questions on the reversibility of the LDA–HDA transformation. 
    more » « less
  6. Abstract We perform path-integral molecular dynamics (PIMD), ring-polymer MD (RPMD), and classical MD simulations of H$$_2$$ 2 O and D$$_2$$ 2 O using the q-TIP4P/F water model over a wide range of temperatures and pressures. The density$$\rho (T)$$ ρ ( T ) , isothermal compressibility$$\kappa _T(T)$$ κ T ( T ) , and self-diffusion coefficientsD(T) of H$$_2$$ 2 O and D$$_2$$ 2 O are in excellent agreement with available experimental data; the isobaric heat capacity$$C_P(T)$$ C P ( T ) obtained from PIMD and MD simulations agree qualitatively well with the experiments. Some of these thermodynamic properties exhibit anomalous maxima upon isobaric cooling, consistent with recent experiments and with the possibility that H$$_2$$ 2 O and D$$_2$$ 2 O exhibit a liquid-liquid critical point (LLCP) at low temperatures and positive pressures. The data from PIMD/MD for H$$_2$$ 2 O and D$$_2$$ 2 O can be fitted remarkably well using the Two-State-Equation-of-State (TSEOS). Using the TSEOS, we estimate that the LLCP for q-TIP4P/F H$$_2$$ 2 O, from PIMD simulations, is located at$$P_c = 167 \pm 9$$ P c = 167 ± 9  MPa,$$T_c = 159 \pm 6$$ T c = 159 ± 6  K, and$$\rho _c = 1.02 \pm 0.01$$ ρ c = 1.02 ± 0.01  g/cm$$^3$$ 3 . Isotope substitution effects are important; the LLCP location in q-TIP4P/F D$$_2$$ 2 O is estimated to be$$P_c = 176 \pm 4$$ P c = 176 ± 4  MPa,$$T_c = 177 \pm 2$$ T c = 177 ± 2  K, and$$\rho _c = 1.13 \pm 0.01$$ ρ c = 1.13 ± 0.01  g/cm$$^3$$ 3 . Interestingly, for the water model studied, differences in the LLCP location from PIMD and MD simulations suggest that nuclear quantum effects (i.e., atoms delocalization) play an important role in the thermodynamics of water around the LLCP (from the MD simulations of q-TIP4P/F water,$$P_c = 203 \pm 4$$ P c = 203 ± 4  MPa,$$T_c = 175 \pm 2$$ T c = 175 ± 2  K, and$$\rho _c = 1.03 \pm 0.01$$ ρ c = 1.03 ± 0.01  g/cm$$^3$$ 3 ). Overall, our results strongly support the LLPT scenario to explain water anomalous behavior, independently of the fundamental differences between classical MD and PIMD techniques. The reported values of$$T_c$$ T c for D$$_2$$ 2 O and, particularly, H$$_2$$ 2 O suggest that improved water models are needed for the study of supercooled water. 
    more » « less